针对现有的聚焦程度评价方法在图像场景内容改变时不能正确评价图像聚焦程度的问题,基于“分类+拟合”的思想,提出了一种与高斯模糊标准差完全等价的图像聚焦程度评价方法。首先,建立了以有限高斯模糊标准差为标记的图像聚焦程度分类数据集;然后,构建了用于提取图像高斯模糊标准差分类分数的非对称核卷积神经网络(AKC-net);最后,采用三次样条插值函数拟合AKC-net全连接层输出的分类分数以及对应的高斯模糊标准差,以最大分数对应的标准差作为图像的聚焦程度评价结果,并在Waterloo数据集和实际拍摄图像上分别进行仿真实验和实拍实验。结果表明:所提方法在不同聚焦图像上分类的平均准确率可达到97.7%,得到的评价结果与高斯模糊标准差真值的均方根误差和平均绝对误差均小于0.07,且实际拍摄图像的聚焦测度值与图像内容无关,实现了图像聚焦程度的绝对评价。