基于LSTM深度网络的配变负荷预测及调整研究
随着可再生能源,如光伏、风能和太阳能的广泛接入电网,电力公司亟需实施精确的短期负荷预测,以确保电网的稳定运行。采用了数据分解技术来消除负荷数据中的噪声和随机干扰,引入变分模态分解(VMD)算法来将原始负荷序列分解为不同频率的简单子序列。基于这些子序列,提出了一种结合VMD和改进CNN-LSTM的组合预测方法。实例分析表明,VMD-DA-RCLSTM模型的RMSE、MAPE、MAE指标均有所降低,说明所提组合预测模型有助于提高电力负荷预测的准确性。
电工技术
2025年05期
立即查看 >
图书推荐
相关工具书