优化CNN-BiGRU-SA组合模型的BDS-3超短期钟差预报
针对钟差数据的非线性特点及单一模型在处理长程依赖问题中的局限性,提出一种融合卷积神经网络(CNN)-双向门控循环单元(BiGRU)-自注意力机制(SA)的北斗三号全球卫星导航系统(BDS-3)超短期钟差预报方法:利用CNN提取钟差数据中的非线性特征,通过BiGRU建模时序依赖关系,引入SA机制以动态分配特征权重;然后,进一步结合混沌映射与莱维(Levy)飞行策略改进北方苍鹰优化(INGO)算法(INGO),优化组合模型的超参数,构建INGO-CNN-BiGRU-SA组合钟差预报模型;最后,利用德国地球科学研究中心提供的BDS-3钟差数据从原子钟类型、不同采样间隔进行1、3、6 h的超短期预报,从权重选择、超参数优化、预报精度、预报稳定度等方面验证组合模型的实用性。结果表明,该组合模型在超短期预报中具有较高的精度和稳定度,平均精度优于0.2 ns,平均稳定度优于0.25 ns。
导航定位学报
网络首发
立即查看 >
图书推荐
相关工具书