BmHSP19.9 targeting P6.9 and VLF-1 to mediate the formation of defective progeny viruses in the silkworm antiviral variety 871C
The 871C silkworm strain exhibits a high level of resistance to Bombyx mori nucleopolyhedrovirus(BmNPV),making it a valuable variety for the sericulture industry. Understanding the underlying mechanism of its resistance holds great biological significance and economic value in addressing viral disease risks in sericulture. Initially, we infected the resistant strain 871C and its control strain 871 with BmNPV and conducted secondary infection experiments using the progeny occlusion bodies(OBs). As a result, a significant decrease in pathogenicity was observed. Electron microscopy analysis revealed that 871C produces progeny virions with defective DNA packaging, reducing virulence following BmNPV infection. Blood proteomic identification of the silkworm variety 871C and control 871after BmNPV infection demonstrated the crucial role of the viral proteins P6.9 and VLF-1 in the production of defective viruses by impeding the proper encapsulation of viral DNA. Additionally, we discovered that BmHSP19.9 interacts with P6.9 and VLF-1 and that its expression is significantly upregulated after BmNPV infection. BmHSP19.9 exhibits strong antiviral activity, in part by preventing the entry of the proteins P6.9 and VLF-1 into the nucleus, thereby hindering viral nucleocapsid and viral DNA assembly.Our findings indicate that the antiviral silkworm strain 871C inhibits BmNPV proliferation by upregulating Bmhsp19.9 and impeding the nuclear localization of the viral proteins P6.9 and VLF-1, leading to the production of defective viral particles. This study offers a comprehensive analysis of the antiviral mechanism in silkworms from a viral perspective, providing a crucial theoretical foundation for future antiviral research and the breeding of resistant silkworm strains.
手机阅读本文
下载APP 手机查看本文
中国蚕学会2024年学术年会论文集
2024年
立即查看 >
图书推荐
相关工具书